Bearing Fault Detection Using Scalogram and Switchable Normalization-Based CNN (SN-CNN)
نویسندگان
چکیده
منابع مشابه
Pedestrian Detection Based on Fast R-CNN and Batch Normalization
Most of the pedestrian detection methods are based on hand-crafted features which produce low accuracy on complex scenes. With the development of deep learning method, pedestrian detection has achieved great success. In this paper, we take advantage of a convolutional neural network which is based on Fast R-CNN framework to extract robust pedestrian features for efficient and effective pedestri...
متن کاملPedestrian Attribute Detection Using CNN
Learning to determine the attributes of pedestrian using their far-view field images is a challenging problem in visual surveillance. Many previous works have focused on the problem of pedestrian detection. Traditionally SVMs have been a popular choice for pedestrian attribute recognition, however recently there has been interest in using CNNs for this task. In this project we implement traditi...
متن کاملME R-CNN: Multi-Expert R-CNN for Object Detection
Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...
متن کاملH-CNN: Spatial Hashing Based CNN for 3D Shape Analysis
We present a novel spatial hashing based data structure to facilitate 3D shape analysis using convolutional neural networks (CNNs). Our method well utilizes the sparse occupancy of 3D shape boundary and builds hierarchical hash tables for an input model under different resolutions. Based on this data structure, we design two efficient GPU algorithms namely hash2col and col2hash so that the CNN ...
متن کاملCnn-based Texture Generation
Gatys et al. (2015a) showed that pair-wise products of features in a convolutional network are a very effective representation of image textures. We propose a simple modification to that representation which makes it possible to incorporate longrange structure into image generation, and to render images that satisfy various symmetry constraints. We show how this can greatly improve rendering of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3089698